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The product of the Escherichia coli murZ gene, UDP-GIcNAc 
enolpyruvyl transferase (MurZ),1 catalyzes the first committed 
step in bacterial peptidoglycan synthesis and is the target of the 
antibiotic fosfomycin.2-4 MurZ catalysis, which involves the 
transfer of an enolpyruvyl moiety from phosphoenolpyruvate 
(PEP) to the 3rOH group of UDP-GIcNAc with cleavage of the 
C-O bond of PEP, constitutes a rare biochemical transformation; 
the only other known enolpyruvyl transfer occurs in the shikimic 
acid pathway in a reaction catalyzed by 5-enolpyruvylshikimate-
3-phosphate (EPSP) synthase. Although MurZ and EPSP 
synthase share significant sequence homology (~ 20% identity),' '5 

recent work suggests distinct differences in the respective 
mechanisms of the two enolpyruvyl transferases. In particular, 
while catalysis by EPSP synthase has been demonstrated to 
proceed through a single non-covalently-bound tetrahedral 
intermediate,6 the MurZ reaction pathway (Scheme 1) has been 
proposed to involve a covalent enzyme-bound thiophospholactyl 
intermediate (I),3,7,8 that precedes the formation of a tetrahedral 
phospholactyl UDP-GIcNAcintermediate(2).9 Previously, (E)-
and (Z)-isomers of 3-fluorophosphoenolpyruvate (3-F-PEP) have 
been synthesized and studied as potential inhibitors and mecha­
nistic probes of PEP-utilizing enzymes. '0^1' In particular, a recent 
study of EPSP synthase revealed that (Z)-3-F-PEP, but not (E)-
3-F-PEP, acts as a pseudosubstrate for EPSP synthase, forming 
a tightly-bound analog of the reaction tetrahedral intermediate 
that does not proceed to product.11 

In this communication we report that both (E)- and (Z)-isomers 
of 3-F-PEP act as time-dependent inactivators of MurZ. In 
both (E)- and (Z)-3-F-PEP-inactivated preparations of MurZ, 
we have detected and characterized the formation of two stable 
enzyme complexes: a covalent 3-fluoro-2-phospholactyl enzyme 
adduct (3) and a non-covalently-bound 3-fluoro-2-phospholactyl 
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Figure 1. MurZ activity as a function of preincubation time in a reaction 
mix consisting of 5 pM MurZ and the following: (A) 50 pM (E)S-F-
PEP and 0.5 mM UDP-GIcNAc; (B) 50 ^M (Z)-3-F-PEP and 0.5 mM 
UDP-GIcNAc; (C) 50 nM (Z)-3-F-PEP in the absence of UDP-GIcNAc. 

UDP-GIcNAc species (4), both of which are fluoro analogs of 
the proposed intermediates in the MurZ reaction pathway. 

Figure 1 shows the time-dependent inactivation of MurZ by 
(£)-3-F-PEP (curve A) and (Z)-3-F-PEP (curve B) in the 
presence of the cosubstrate, UDP-GIcNAc. On the time scale 
investigated neither (£)-3-F-PEP (data not shown) nor (Z)-3-
F-PEP (curve C) inactivated MurZ in the absence of UDP-
GIcNAc. The kinetics of inactivation were analyzed:14 for (E)-
3-F-PEP, fcinact = 4.6 ± 1.1 min-1, and K{ = 38 ± 16 uM; for 
(Z)-3-F-PEP, ifcinact = 1-8 ± 0.4 min-1, and AT1 » 36 ± 19 uM. 

Anion-exchange HPLC8-9 of inactivation reactions consisting 
of MurZ, (E)- or (Z)-3-F-PEP, and [14C]UDP-GIcNAc showed 
no evidence of formation of an enolpyruvyl UDP-GlcNAc-like 
product. However, incorporation of [14C]UDP-GIcNAc into a 
new species, 4, with an elution volume similar to that of 2 was 
observed. A large-scale (~ 100 mg of MurZ) inactivation reaction 
was quenched with 0.2 N KOH after S min and subjected to 
anion-exchange HPLC for purification and subsequent NMR 
and mass spectrometry characterization of 4.1S 

Figure 2A shows the 19F-NMR spectrum of (£)-3-F-PEP-
inactivated MurZ prior to quenching in order to analyze enzyme-
associated species. (19F-NMR spectra of (Z)-3-F-PEP-inacti-
vated MurZ were equivalent; spectra not shown.) The broad 
resonances centered at -216 and -223 ppm represent two distinct 
protein-associated moieties, with chemical shifts that are char­
acteristic of -CH2F groups. Upon quenching of the reaction 
with 0.2 N KOH, the spectrum changes dramatically (Figure 
2B). One of the broad resonances in the spectrum in Figure 2 A 
is replaced by a well-resolved triplet at -224.8 ppm. The chemical 
shift and coupling constants of this species in 0.2 N KOH 
correspond to those observed for purified 4. The narrowing of 
the line width and resolution of F-H couplings in the base-
quenched spectrum are consistent with the release from the active 
site of the non-covalently-bound 4. The observation of a broad 
resonance centered at -217.2 ppm in the spectrum of the base-
denatured enzyme (Figure 2B) is strongly suggestive of a covalent 
enzyme-bound adduct and is consistent with the formation of 3. 

(14) MurZ was purifed as described in ref 8, except that a PEP "cleansing" 
procedure was not performed, as the excess UDP-GIcNAc present in the 
kinetic assays and NMR experiments resulted in the rapid conversion of bound 
PEP to enolpyruvyl UDP-GIcNAc product. MurZ activity was monitored 
using a coupled assay utilizing enolpyruvyl UDP-GIcNAc reductase, MurB 
(ref 12). (E)- and (Z)-3-F-PEP inactivation assays were performed at 25 0C 
by preincubating MurZ (5 tiM), UDP-GIcNAc (0.5 mM), varying concentra­
tions of (£)-3-F-PEP (18, 25,35, 50, and 100 pM) or (Z)-3-F-PEP (30,40, 
60, 100, and 200 ^M), and Tris buffer (50 mM, pH 8.0). At 10 s intervals, 
a 50 iiL aliquot of the preincubation mix was diluted by addition to 950 JJL 
of coupled assay mix (ref 12), and activity was measured within 2 min of 
dilution. For each concentration of (E)- or (Z)-3-F-PEP, an apparent first-
order rate constant for inactivation (k,„) was obtained, and a plot of l/fc,n> 
versus 1 /[(E)- or (Z)-3-F-PEP] yielded the values for KM and K^ (ref 13). 

(15) 1H-1H DQF-COSY and 1H-19F HETCOR spectra were consistent 
with a UDP-GlcNAc-derived species with a -CH2F moiety. Negative-ion 
HR FAB-MS gave a peak at m/z 792.0455 consistent with 4 (calculated for 
C20H30FN3O23P3-: 792.0467). 
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Scheme 1. Proposed Mechanism of MurZ 
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Scheme 2. Inactivation of MurZ by (E)- or (Z)-3-F-PEP 
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Figure 2. (A) "F-NMR spectrum (8X) of a sample containing 1.5 mM 
MurZ, 5 mM UDP-GIcNAc, and 2 mM (£)-3-F-PEP, in 50 mM Tris 
(pH 8.0). The sample was incubated for 40 min prior to NMR data 
collection. The acquisition time for spectrum A was 2 h, after which the 
sample was quenched by the addition of 0.2 N KOH (final concentra­
tion). (B) "F-NMR spectrum (IX) of the sample after quenching. 
Acquisition time for spectrum B was also 2 h. Spectra were collected 
on a Bruker AM400 spectrometer operating at 376 MHz and were 
referenced to an external standard of 1% trifluoroacetic acid (6 = -76.53 
ppm) in D2O. 

Further evidence for the existence of 3 was obtained from 
electrospray mass spectrometry (ES-MS) of (Z)-3-F-PEP-
inactivated MurZ samples.16 Deconvoluted spectra showed, in 
addition to a peak at molecular weight 44 831 corresponding to 
native MurZ, a new peak corresponding to a species with molecular 
weight 45 015, consistent with the expected molecular weight of 
3 (data not shown). Covalent linkage most likely occurs through 
Cys 115, which has been shown to be the site of inactivation by 
fosfomycin.3'4 No protein-associated resonances were observed 
in the 19F-NMR spectrum of a MurZ preparation that had been 
inactivated with fosfomycin and UDP-GIcNAc prior to the 
addition of (Z)-3-F-PEP, providing support for a covalent linkage 

(16) ES-MS was performed as described in ref 4, under enzyme-denaturing 
conditions (0.05% trifluoroacetic acid, water/acetonitrile). 
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through Cys 115 and strongly suggesting that 3 and 4 are formed 
at the active site of MurZ. 

The observation of two forms of inactive enzyme, 3 and 4, 
mimics the detection of 1 and 2 as transient intermediates in 
normal catalysis.8'9 The 19F-NMR spectrum of MurZ to which 
purified 4 has been added is similar to that observed in Figure 
2A, indicating the formation of 3 from 4 within the acquisition 
time of the NMR experiment (12 h), and suggesting that there 
is an equilibrium between 3 and 4 at the active site. However, 
no breakdown of 4 in the forward direction is detected by 19F-
NMR over 12 h, reflecting a relative rate retardation of at least 
10* compared to the breakdown of 2 in normal catalysis.17 While 
these data are consistent with sequential formation of 3 followed 
by 4, as has been proposed for 1 and 2 in normal catalysis, we 
cannot, at the present time, rule out the possibility that 3 and 4 
are formed by parallel pathways in which the 3-OH of UDP-
GIcNAc and the thiolate side chain of Cys 115 are in competition 
for direct attack on C2 of (E)- or (Z)-3-F-PEP. Kinetic 
experiments to address this issue are in progress. 
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(17) Given that the rate constant for breakdown in the forward direction 
of 2 is ~200 min-' (ref 8), and assuming that 10% product formation could 
have been easily detected by "F-NMR over 12 h, the retardation of breakdown 
in the forward direction of 4 relative to 2 is estimated to be 10(720 min) (200 
min-') > 10«. 


